728x90
머신러닝
5

[실습] 다항분포 나이브 베이즈(Multinomial Naive Bayes)

다항분포 나이브 베이즈는 앞서 실습한 베르누이 나이브 베이즈와 비슷하다. 하지만 베르누이는 데이터의 특징이 0 또는 1로 표현되고 다항분포는 데이터의 특징이 출현 횟수로 표현된다. Import import numpy as np import pandas as pd from sklearn.feature_extraction.text import CountVectorizer from sklearn.naive_bayes import MultinomialNB from sklearn.metrics import accuracy_score 데이터 생성 영화 감상평을 데이터로 생성하여 실습해보았다. review_list = [ {'movie_review' : 'this is great great movie. I will ..

[실습]Bernoulli Naive Bayes(베르누이 나이브 베이즈)

Import import numpy as np import pandas as pd from sklearn.feature_extraction.text import CountVectorizer from sklearn.naive_bayes import BernoulliNB #베르누이 나이브 베이즈 from sklearn.metrics import accuracy_score 'CountVectorizer'에 대한 것은 사용할 때 설명하겠다. 데이터 생성 #임의의 데이터 생성 email_list = [ {'email title' : 'free game only today', 'spam' : True}, {'email title' : 'cheapest flight deal', 'spam' : True}, {'ema..

[실습] Gaussian Naive Bayes(가우시안 나이브 베이즈)

Import 다음과 같이 필요한 라이브러리를 임포트한다. import pandas as pd from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split #가우시안 나이브 베이즈 from sklearn.naive_bayes import GaussianNB from sklearn import metrics from sklearn.metrics import accuracy_score 데이터 불러오기 각 데이터 속성의 뜻은 다음과 같다. sepal length : 꽃받침 길이 sepal width : 꽃받침 너비 petal length : 꽃잎 길이 petal width : 꽃잎 너비 target : 붓꽃의..

나이브 베이즈(Naive Bayes)

나이브 베이즈 알고리즘은 대표적인 확률 기반 머신러닝 분류 알고리즘이다. 나이브 베이즈는 데이터를 독립적인 사건으로 보고 이 사건들을 베이즈 이론에 대입시켜 가장 높은 확률의 레이블을 분류해낸다. 베이즈 이론은 다음과 같은 공식으로 표현된다. P(A|B) : 어떤 사건 B가 일어났을 때 사건 A가 일어날 확률 P(B|A) : 어떤 사건 A가 일어났을 때 사건 B가 일어날 확률 P(A) : 어떤 사건 A가 일어날 확률 P(A|B)와 같이 어떤 사건 B가 일어났을 때 사건 A가 일어날 확률을 조건부 확률이라고 한다. 조건부 확률의 공식은 다음과 같다. 머신러닝에서의 나이브 베이즈 공식 P(레이블 | 데이터 특징) = P(데이터 특징 | 레이블) * P(레이블) / P(데이터 특징) 어떤 데이터가 있을 때 그..

의사결정 트리(decision tree)

의사결정 트리는 데이터 분류 및 회귀에 사용되는 지도학습 알고리즘이다. 간단하게 의사결정 트리가 무엇인지 비유하자면 스무고개 놀이와 비슷하다고 말할 수 있다. 즉, 여러 질문을 하여 답을 도출해내는 방법이라고도 할 수 있다. 다음과 같은 데이터를 예시로 설명을 이어가겠다. 이름 군대를 다녀왔는가 긴 생머리인가 성별 김덕수 네 아니요 남자 이쁜이 아니요 아니요 여자 박장군 네 아니요 남자 최빛나 아니요 네 여자 최강민 네 아니요 남자 지화자 아니요 아니요 여자 위 데이터를 바탕으로 각 사람이 남자인지 여자인지를 구별하는 질문을 만든다고 해보자. 먼저 군대를 다녀왔는지를 먼저 물어보면 한 번에 남자와 여자가 분류된다. 하지만 긴 생머리인지 먼저 물어보게되면 정확하게 남자와 여자를 구분할 수 없으므로 이후 군..

728x90